👹
Carlos's Tech Blog
  • 🧔ECUs
    • ZYNQ_Documents
      • [ZYNQ] 构建ZYNQ的BSP工程
      • [ZYNQ] 启动流程
      • [ZYNQ] Secure Boot Flow
      • [ZYNQ] Provisioning Guideline
      • [ZYNQ] Decrypting Partition by the Decrypt Agent Using PUF key
      • [ZYNQ] enabling the cryptsetup on ramdisk
      • [ZYNQ] Encrypt external files based on file system using PUF key
      • [ZYNQ] Loading an Encrypted Linux kernel at U-Boot with a KUP Key
      • [ZYNQ] cross-compile the cryptsetup on Xilinx ZYNQ aarch64 platform
      • [ZYNQ] Linux Linaro系统镜像制作SD卡启动
    • S32G_Documents
      • [S32G] Going through the s32g hard/soft platform
      • [S32G] S32g247's Secure Boot using HSE firmware
        • S32g2 HSE key config
        • How S32g verify secure boot image
        • S32g secure boot signature generation
        • How to download and build S32g Secure boot image
        • [S32G] OTA with Secure Boot
    • RT117x_Documents
      • [RT-117x]IMX RT1170 Provisioning Guideline
      • [RT-117x] Going through the MX-RT1170 hard/soft platform
      • [RT-117x] i.MX-RT1170's Secure Boot
        • [RT-117x]Signing image with the HSM (SignServer)
    • LS104x_Documents
      • [LS104x] bsp project
      • [LS104x] boot flow
      • [LS104x] secure boot
      • [LS104x] Application Note, Using the PKCS#11 in TCU platform
      • [LS104x] 使用ostree更新rootfs
      • [LS104x] ostree的移植
      • [LS104x] Starting with Yocto
      • [LS104x] 使用FIT的kernel格式和initramfs
    • IMX6/8_Documents
      • [IMX6] Defining A U-Boot Command
      • NXP IMX6 嵌入式板子一些笔记
      • NXP-imx6 initialization
    • Vehicle_Apps
      • [SecOC] Tree
        • [SecOC] SecOC Freshness and MAC Truncation
  • 😾TECH
    • Rust Arm OS
      • ARMv7m_Using_The_RUST_Cross_Compiler
    • ARM
      • ARM-v7-M
        • 01_ARMv7-M_处理器架构技术综述
        • 02_ARMv7-M_编程模型与模式
        • 03_ARMv7-M_存储系统结构
        • 04_ARMv7-M_异常处理及中断处理
      • ARM-v8-A
        • 02_ARMv8_基本概念
        • 03_ARMv8_指令集介绍_加载指令集和存储指令集
        • 04_ARMv8_指令集_运算指令集
        • 05_ARMv8_指令集_跳转_比较与返回指令
        • 06_ARMv8_指令集_一些重要的指令
        • 0X_ARMv8_指令集_基于汇编的UART驱动
        • 07_ARMv8_汇编器Using as
        • 08_ARMv8_链接器和链接脚本
        • 09_ARMv8_内嵌汇编(内联汇编)Inline assembly
        • 10_ARMv8_异常处理(一) - 入口与返回、栈选择、异常向量表
        • 11_ARMv8_异常处理(二)- Legacy 中断处理
        • 12_ARMv8_异常处理(三)- GICv1/v2中断处理
        • 13_ARMv8_内存管理(一)-内存管理要素
        • 14_ARMv8_内存管理(二)-ARM的MMU设计
        • 15_ARMv8_内存管理(三)-MMU恒等映射及Linux实现
        • 16_ARMv8_高速缓存(一)cache要素
        • 17_ARMv8_高速缓存(二)ARM cache设计
        • 18_ARMv8_高速缓存(三)多核与一致性要素
        • 19_ARMv8_TLB管理(Translation Lookaside buffer)
        • 20_ARMv8_barrier(一)流水线和一致性模型
        • 21_ARMv8_barrier(二)内存屏障案例
      • ARM Boot Flow
        • 01_Embedded_ARMv7/v8 non-secure Boot Flow
        • 02_Embedded_ARMv8 ATF Secure Boot Flow (BL1/BL2/BL31)
        • 03_Embedded_ARMv8 BL33 Uboot Booting Flow
      • ARM Compiler
        • Compiler optimization and the volatile keyword
      • ARM Development
        • 在MACBOOK上搭建ARMv8架构的ARM开发环境
        • Starting with JLink debugger or QEMU
    • Linux
      • Kernel
        • 0x01_LinuxKernel_内核的启动(一)之启动前准备
        • 0x02_LinuxKernel_内核的启动(二)SMP多核处理器启动过程分析
        • 0x21_LinuxKernel_内核活动(一)之系统调用
        • 0x22_LinuxKernel_内核活动(二)中断体系结构(中断上文)
        • 0x23_LinuxKernel_内核活动(三)中断体系结构(中断下文)
        • 0x24_LinuxKernel_进程(一)进程的管理(生命周期、进程表示)
        • 0x25_LinuxKernel_进程(二)进程的调度器的实现
        • 0x26_LinuxKernel_设备驱动(一)综述与文件系统关联
        • 0x27_LinuxKernel_设备驱动(二)字符设备操作
        • 0x28_LinuxKernel_设备驱动(三)块设备操作
        • 0x29_LinuxKernel_设备驱动(四)资源与总线系统
        • 0x30_LinuxKernel_设备驱动(五)模块
        • 0x31_LinuxKernel_内存管理(一)物理页面、伙伴系统和slab分配器
        • 0x32_LinuxKernel_内存管理(二)虚拟内存管理、缺页与调试工具
        • 0x33_LinuxKernel_同步管理_原子操作_内存屏障_锁机制等
        • 01_LinuxDebug_调试理论和基础综述
      • Userspace
        • Linux-用户空间-多线程与同步
        • Linux进程之间的通信-管道(上)
        • Linux进程之间的通信-管道(下)
        • Linux进程之间的通信-信号量(System V)
        • Linux进程之间的通信-内存共享(System V)
        • Linux进程之间的通信-消息队列(System V)
        • Linux应用调试(一)方法、技巧和工具 - 综述
        • Linux应用调试(二)工具之coredump
        • Linux应用调试(三)工具之Valgrind
        • Linux机制之内存池
        • Linux机制之对象管理和引用计数(kobject/ktype/kset)
        • Linux机制copy_{to, from}_user
        • Linux设备树 - DTS语法、节点、设备树解析等
        • Linux System : Managing Linux Services - inittab & init.d
        • Linux System : Managing Linux Services - initramfs
      • Kernel Examples
        • Linux Driver - GPIO键盘驱动开发记录_OMAPL138
        • 基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(一)之miscdevice和ioctl
        • 基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(二)之cdev与read、write
        • 基于OMAPL138的字符驱动_GPIO驱动AD9833(三)之中断申请IRQ
        • Linux内核调用SPI驱动_实现OLED显示功能
        • Linux内核调用I2C驱动_驱动嵌套驱动方法MPU6050
    • OPTEE
      • 01_OPTEE-OS_基础之(一)功能综述、简要介绍
      • 02_OPTEE-OS_基础之(二)TrustZone和ATF功能综述、简要介绍
      • 03_OPTEE-OS_系统集成之(一)编译、实例、在QEMU上执行
      • 05_OPTEE-OS_系统集成之(三)ATF启动过程
      • 06_OPTEE-OS_系统集成之(四)OPTEE镜像启动过程
      • 07_OPTEE-OS_系统集成之(五)REE侧上层软件
      • 08_OPTEE-OS_系统集成之(六)TEE的驱动
      • 09_OPTEE-OS_内核之(一)ARM核安全态和非安全态的切换
      • 10_OPTEE-OS_内核之(二)对安全监控模式的调用的处理
      • 11_OPTEE-OS_内核之(三)中断与异常的处理
      • 12_OPTEE-OS_内核之(四)对TA请求的处理
      • 13_OPTEE-OS_内核之(五)内存和cache管理
      • 14_OPTEE-OS_内核之(六)线程管理与并发
      • 15_OPTEE-OS_内核之(七)系统调用及IPC机制
      • 16_OPTEE-OS_应用之(一)TA镜像的签名和加载
      • 17_OPTEE-OS_应用之(二)密码学算法和安全存储
      • 18_OPTEE-OS_应用之(三)可信应用的开发
      • 19_OPTEE-OS_应用之(四)安全驱动开发
      • 20_OPTEE-OS_应用之(五)终端密钥在线下发系统
    • Binary
      • 01_ELF文件_目标文件格式
      • 02_ELF文件结构_浅析内部文件结构
      • 03_ELF文件_静态链接
      • 04_ELF文件_加载进程虚拟地址空间
      • 05_ELF文件_动态链接
      • 06_Linux的动态共享库
      • 07_ELF文件_堆和栈调用惯例以ARMv8为例
      • 08_ELF文件_运行库(入口、库、多线程)
      • 09_ELF文件_基于ARMv7的Linux系统调用原理
      • 10_ELF文件_ARM的镜像文件(.bin/.hex/.s19)
    • Build
      • 01_Script_makefile_summary
    • Rust
      • 02_SYS_RUST_文件IO
    • Security
      • Crypto
        • 1.0_Security_计算机安全概述及安全需求
        • 2.0_Security_随机数(伪随机数)
        • 3.0_Security_对称密钥算法加解密
        • 3.1_Security_对称密钥算法之AES
        • 3.2_Security_对称密钥算法之MAC(CMAC/HMAC)
        • 3.3_Security_对称密钥算法之AEAD
        • 8.0_Security_pkcs7(CMS)_embedded
        • 9.0_Security_pkcs11(HSM)_embedded
      • Tools
        • Openssl EVP to implement RSA and SM2 en/dec sign/verify
        • 基于Mac Silicon M1 的OpenSSL 编译
        • How to compile mbedtls library on Linux/Mac/Windows
    • Embedded
      • eMMC启动介质
  • 😃Design
    • Secure Boot
      • JY Secure Boot Desgin
    • FOTA
      • [FOTA] Module of ECUs' FOTA unit design
        • [FOTA] Tech key point: OSTree Deployment
        • [FOTA] Tech key point: repositories role for onboard
        • [FOTA] Tech key point: metadata management
        • [FOTA] Tech key point: ECU verifying and Decrpting
        • [FOTA] Tech key point: time server
      • [FOTA] Local-OTA for Embedded Linux System
    • Provisioning
      • [X-Shield] Module of the Embedded Boards initialization
    • Report
由 GitBook 提供支持
在本页
  • Linux内核调用SPI驱动_实现OLED显示功能
  • 0. 导语
  • 1. 驱动架构模型
  • 2. linux SPI驱动的注册
  • 源代码
  • 参考文献:
  1. TECH
  2. Linux
  3. Kernel Examples

Linux内核调用SPI驱动_实现OLED显示功能

https://github.com/carloscn/blog/issues/38

上一页基于OMAPL138的字符驱动_GPIO驱动AD9833(三)之中断申请IRQ下一页Linux内核调用I2C驱动_驱动嵌套驱动方法MPU6050

最后更新于1年前

Linux内核调用SPI驱动_实现OLED显示功能

0. 导语

进入Linux的世界,发现真的是无比的有趣,也发现搞Linux驱动从底层嵌入式搞起真的是很有益处。我们在单片机、DSP这些无操作系统的裸机中学习了这些最基本的驱动,然后用过GPIO时序去模拟、然后用那个芯片平台的外设去配置参数,到Linux的世界,对于底层的时序心中有数,做起来就容易很多。学习的过程就是不断的给自己出难题,然后去解决他,在未来工程里面遇到这个问题,就瞬间可以解决了,这就是经验的积累吧。

Linux驱动目录,包含了底层写好的SPI驱动,我们需要想办法调用人家写好的SPI驱动,就不需要写IO口模拟SPI时序了。在网络上,对于SPI应用级的驱动倒是很多,平台级驱动很少,而我们想把平台级驱动二次包装在我们的字符设备驱动中,对于用户,无需考虑SPI通信写协议还是写命令,只需要使用read和write函数写显示的内容就好了。

基于这样的想法,我们找了一个使用SPI协议的从器件来实现,我手里面有OLED设备,是支持SPI协议在OLED显示面板上显示字符的。所以搭建一个实验平台,做一个OLED的demo,未来所有的从SPI设备都遵循这个框架(而且我们在这个驱动中加入 了内核机制的驱动的自旋锁、互斥体的内核操作)。

实验平台如下:

  • ARM板子: 友善之臂Nano-T3 (CortexA53架构, Samsung s5c6818)

  • **ARM的Linux系统:**Ubuntu 16.04.2 LTS

  • **编译调试Linux:**Ubuntu 16.04.3 LTS amd64版本

  • **编译器:**arm-cortexa9-linux-gnueabihf-gcc (64位版本)

  • **从设备:**OLED (SPI模式)

1. 驱动架构模型

总体驱动架构模型如图所示,对于OLED驱动的表述,主要包含两个方面,一个是OLED这个传感器的抽象;一个是,misc字符驱动的注册,里面有read和write函数,供用户接口调用,(在read和write函数里面使用OLED设备表述里面的master控制oled的行为就好了,比如显示,清除,复位之类的)。

oled设备表述,为OLED设备的抽象,里面包含对硬件的描述和SPI的描述,还有对于写时序的时候使用自旋锁和互斥体对时序进行的保护,master为对oled设备的基本操作,包含复位,写字节等等。

在本博客中最重要的就是SPI平台驱动的使用,问题也非常的清晰,我们如何使用linux内核驱动里面写好的spi,参考Linux SPI API文档里面,那么复杂的结构体,哪些是在驱动中要使用,哪些是在应用级程序中使用的。网络上的资料大部分都是应用级的,没有讲述在字符驱动中二级注册spi驱动的,而我们对于OLED这样的SPI设备,则需要在驱动中调用,让用户无需关心任何SPI的调用。

在驱动模型中,master操作结构体里面,oled_write_byte这样的函数里面则需要调用系统级SPI,问题就非常明确,就在写byte的时候使用SPI。

那么我们就需要在注册完字符设备的时候,向内核注册spi,然后我们使用该SPI对OLED操作。

2. linux SPI驱动的注册

Linux Drivers目录具备一定的通用性也具备各个架构区别不同,在包含头文件的时候,要包含

  1. 通用性的linux spi文件 #include <linux/spi/spi.h>

  2. mach级特性文件#include <mach/slsi-spi.h>

同时也要关注:

  1. plat级的device.c文件,里面包含了spi_board信息的模板,用这个可以省去了很多麻烦。

我们使用的oled_hw_t, 图上的结构(OLED->hw)的具体定义,里面定义了io口的编号和spi的各种机制,注意谁是指针,谁是实体。

struct oled_hw_t 
{
	unsigned int res_io_num;
	unsigned int dc_io_num;
	struct spi_transfer		spi_trans;
	struct spi_message		spi_msg;
	struct spi_driver		*spi_drv;
	struct spi_device		*spi_dev;
	struct spi_master		*spi_master_bus;
};

我需要定义以下机制:

  • spi_driver

    static const struct spi_device_id oled_spi_id[] =
    {
    		{“oledspi”, 1},
    		{},
    };
    static struct spi_driver sp6818_spi_driver = 
    {
    		.driver 			= 	
    		{
    				.name		=	"oled_spi",
    				.bus		=	&spi_bus_type,
    				.owner  	= 	THIS_MODULE,
    		},
    		.probe				=	oled_bus_spi_probe,
    		.remove 			= 	__devexit_p(oled_bus_spi_remove),
    		.suspend 			= 	oled_bus_spi_suspend,
    		.id_table			=	oled_spi_id,
    };
    MODULE_DEVICE_TABLE( spi, oled_spi_id );

    按照spi_driver驱动的格式进行,补充好probe和remove,suspend函数,但是这里存在一个问题,当我们应该spi_register_driver的时候,正常应该执行probe函数里面的内容,但是这个不执行,怀疑是因为二级包装问题,我们的主调还是使用misc驱动的字符设备 __init标示在 misc的初始化函数上,而导致不进入spi_driver的probe函数。

  • spi_device

    spi_device和spi_driver是成对出现的,在spi_driver注册完之后,则需要对spi_deivce进行配置,我们首先要声明一个spi_device,一会儿借助linux 的drivers 里面的platform级的deivce.c文件中的spi_board来注册我们的spi_device。

    定义spi_device驱动,这里面的配置信息可以瞎填,我们使用spi_board中的配置信息会覆盖这些信息。

    static struct spi_device sp6818_spi_device = 
    {
    		.mode				=	SPI_MODE_3,
    		.bits_per_word		=	16,
    		.chip_select		=	SPI_CS_HIGH,
    		.max_speed_hz		=	100000,
    };

    然后现在的工作就是如何spi_device和我们刚才spi_driver进行绑定了。

    定义下面的信息:

    static struct s3c64xx_spi_csinfo sp6818_csi = 
    {
            .line       		= 	OLED_CS_IO,
            .set_level  		= 	gpio_set_value,
            .fb_delay   		= 	0x2,
    };
    		
    struct spi_board_info sp6818_board_info = 
    {
            .modalias       	= 	"oled",
            .platform_data  	= 	NULL,
            .max_speed_hz   	= 	10 * 1000 * 1000,
            .bus_num        	= 	0,
            .chip_select    	= 	2,
            .mode           	= 	SPI_MODE_3,
            .controller_data    = 	&sp6818_csi,
    };

    这个模板就定义在platform级文件夹的device.c里面,我们按照模板的定义方式在我们的驱动文件里面也定义一个,在s3c64xx_spi_csinfo sp6818_csi中定义的是片选信号的IO口,这个IO口根据硬件原理图来的,然后定义spi_board_info结构体,这些都是为spi_device做准备的,spi的配置信息也由此写入。

    按照这个顺序进行:程序就如同下面的参考,后面会给出完成程序。

    static void oled_module_hw_init( OLED *self )
    {
    	int ret,i;
    	struct spi_master *master;
    	struct spi_device *spi;
    
    	self->hw.res_io_num = OLED_RES_IO;
    	self->hw.dc_io_num	= OLED_DC_IO;
    	printk( DRV_NAME "\tregister spi driver...\n" );
    	self->hw.spi_drv = &sp6818_spi_driver;
    	ret = spi_register_driver( self->hw.spi_drv );
    	if ( ret < 0 ) {
    		printk( DRV_NAME "\terror: spi driver register failed" );
    	}
    	printk( DRV_NAME "\tmaster blind spi bus.\n" );
    	master = spi_busnum_to_master( 0 );
    	master->num_chipselect = 4;
    	if ( !master ) {
    		printk( DRV_NAME "\terror: master blind spi bus.\n" );
    		ret = -ENODEV;
    		return ret;
    	}
    	printk( DRV_NAME "\tnew spi device...\n" );
    	spi =	spi_new_device( master, &sp6818_board_info );
    	if ( !spi ) {
    		printk( DRV_NAME "\terror: spi occupy.\n" );		
    		return -EBUSY;
    	}
    	self->hw.spi_master_bus	= master;
    	self->hw.spi_dev = spi;
    	printk( DRV_NAME "\thw init succussful...\n" );
    }

到此,完成,spi的注册。

spi_device的注册里面,会在ARM上面的Linux的/sys/bus/spi/devices下面出现我们注册的device设备,如图:

spi0.2就是我们所注册的device设备,这个命名就和我们的spi_board_info有关系了,

如果,bus_num = 5, chip_select = 20, 那么注册的device就是spi5.20了。这里还有个坑,就是片选信号的数值大小和master里面的片选num的问题,linux的spi api要求,master的num-chipselect必须大于 spi_board_info里面chip_select的数值。你也看到上面初始化程序,为什么master->num_chipselect = 4; 这个语句了。

3. SPI 的使用

在驱动里面对于spi的使用就非常简单了。例如我们oled的write_byte函数:

static void oled_module_write_byte( OLED* self,				\ 
									unsigned int dat, 		\
									enum data_type_t type)
{
	int status;
	unsigned int write_buffer[1];

	if ( type == ENUM_WRITE_TYPE_CMD ) 
		self->master->set_dc_low( self );
	else 
		self->master->set_dc_high( self );
	write_buffer[0] = dat;
	write_buffer[1] = 0xFF;
	status = spi_write( self->hw.spi_dev, write_buffer, 1 );
	if ( status  )
		dev_err( &self->hw.spi_dev->dev, "%s error %d\n", __FUNCTION__, status );
}

使用spi_write函数就好了。

4. 结语

探索Linux SPI真是很费劲,这些花了好多时间,经历了无数次的实验,因为是驱动,经常在调试过程中出现暴栈、指针乱指,这些对于Linux内核都是毁灭性的错误,只能重启ARM Linux。光重启Linux就好几百次。不过总算是有成果,对于Linux驱动的学习还在进行,下次可能要实验I2C的平台驱动,找到规律和不同,再加上一些内核的操作,比如并发和IO等,在学习中成长。

源代码

Github地址:https://github.com/lifimlt/carlosdriver

见 oled.c oled.h 和oledfont.h三个文件

参考文献:

spi_driver会向内核申请总线处理的权限,当我们加载驱动的时候,在ARM机器的linux上的/sys/bus/spi/drivers目录下会看到申请SPI驱动内核的名字。

[1] Linux org, ,

[2] 郝过, , 2016年2月28日

[3] invo-tronics , , 2014年9月30日

[4] Linux学习之路, , 2016年6月22日

😾
Serial Peripheral Interface (SPI)
Linux设备驱动模型SPI之二
SPI Driver for Linux Based Embedded System
spi驱动框架全面分析,从master驱动到设备驱动