👹
Carlos's Tech Blog
  • 🧔ECUs
    • ZYNQ_Documents
      • [ZYNQ] 构建ZYNQ的BSP工程
      • [ZYNQ] 启动流程
      • [ZYNQ] Secure Boot Flow
      • [ZYNQ] Provisioning Guideline
      • [ZYNQ] Decrypting Partition by the Decrypt Agent Using PUF key
      • [ZYNQ] enabling the cryptsetup on ramdisk
      • [ZYNQ] Encrypt external files based on file system using PUF key
      • [ZYNQ] Loading an Encrypted Linux kernel at U-Boot with a KUP Key
      • [ZYNQ] cross-compile the cryptsetup on Xilinx ZYNQ aarch64 platform
      • [ZYNQ] Linux Linaro系统镜像制作SD卡启动
    • S32G_Documents
      • [S32G] Going through the s32g hard/soft platform
      • [S32G] S32g247's Secure Boot using HSE firmware
        • S32g2 HSE key config
        • How S32g verify secure boot image
        • S32g secure boot signature generation
        • How to download and build S32g Secure boot image
        • [S32G] OTA with Secure Boot
    • RT117x_Documents
      • [RT-117x]IMX RT1170 Provisioning Guideline
      • [RT-117x] Going through the MX-RT1170 hard/soft platform
      • [RT-117x] i.MX-RT1170's Secure Boot
        • [RT-117x]Signing image with the HSM (SignServer)
    • LS104x_Documents
      • [LS104x] bsp project
      • [LS104x] boot flow
      • [LS104x] secure boot
      • [LS104x] Application Note, Using the PKCS#11 in TCU platform
      • [LS104x] 使用ostree更新rootfs
      • [LS104x] ostree的移植
      • [LS104x] Starting with Yocto
      • [LS104x] 使用FIT的kernel格式和initramfs
    • IMX6/8_Documents
      • [IMX6] Defining A U-Boot Command
      • NXP IMX6 嵌入式板子一些笔记
      • NXP-imx6 initialization
    • Vehicle_Apps
      • [SecOC] Tree
        • [SecOC] SecOC Freshness and MAC Truncation
  • 😾TECH
    • Rust Arm OS
      • ARMv7m_Using_The_RUST_Cross_Compiler
    • ARM
      • ARM-v7-M
        • 01_ARMv7-M_处理器架构技术综述
        • 02_ARMv7-M_编程模型与模式
        • 03_ARMv7-M_存储系统结构
        • 04_ARMv7-M_异常处理及中断处理
      • ARM-v8-A
        • 02_ARMv8_基本概念
        • 03_ARMv8_指令集介绍_加载指令集和存储指令集
        • 04_ARMv8_指令集_运算指令集
        • 05_ARMv8_指令集_跳转_比较与返回指令
        • 06_ARMv8_指令集_一些重要的指令
        • 0X_ARMv8_指令集_基于汇编的UART驱动
        • 07_ARMv8_汇编器Using as
        • 08_ARMv8_链接器和链接脚本
        • 09_ARMv8_内嵌汇编(内联汇编)Inline assembly
        • 10_ARMv8_异常处理(一) - 入口与返回、栈选择、异常向量表
        • 11_ARMv8_异常处理(二)- Legacy 中断处理
        • 12_ARMv8_异常处理(三)- GICv1/v2中断处理
        • 13_ARMv8_内存管理(一)-内存管理要素
        • 14_ARMv8_内存管理(二)-ARM的MMU设计
        • 15_ARMv8_内存管理(三)-MMU恒等映射及Linux实现
        • 16_ARMv8_高速缓存(一)cache要素
        • 17_ARMv8_高速缓存(二)ARM cache设计
        • 18_ARMv8_高速缓存(三)多核与一致性要素
        • 19_ARMv8_TLB管理(Translation Lookaside buffer)
        • 20_ARMv8_barrier(一)流水线和一致性模型
        • 21_ARMv8_barrier(二)内存屏障案例
      • ARM Boot Flow
        • 01_Embedded_ARMv7/v8 non-secure Boot Flow
        • 02_Embedded_ARMv8 ATF Secure Boot Flow (BL1/BL2/BL31)
        • 03_Embedded_ARMv8 BL33 Uboot Booting Flow
      • ARM Compiler
        • Compiler optimization and the volatile keyword
      • ARM Development
        • 在MACBOOK上搭建ARMv8架构的ARM开发环境
        • Starting with JLink debugger or QEMU
    • Linux
      • Kernel
        • 0x01_LinuxKernel_内核的启动(一)之启动前准备
        • 0x02_LinuxKernel_内核的启动(二)SMP多核处理器启动过程分析
        • 0x21_LinuxKernel_内核活动(一)之系统调用
        • 0x22_LinuxKernel_内核活动(二)中断体系结构(中断上文)
        • 0x23_LinuxKernel_内核活动(三)中断体系结构(中断下文)
        • 0x24_LinuxKernel_进程(一)进程的管理(生命周期、进程表示)
        • 0x25_LinuxKernel_进程(二)进程的调度器的实现
        • 0x26_LinuxKernel_设备驱动(一)综述与文件系统关联
        • 0x27_LinuxKernel_设备驱动(二)字符设备操作
        • 0x28_LinuxKernel_设备驱动(三)块设备操作
        • 0x29_LinuxKernel_设备驱动(四)资源与总线系统
        • 0x30_LinuxKernel_设备驱动(五)模块
        • 0x31_LinuxKernel_内存管理(一)物理页面、伙伴系统和slab分配器
        • 0x32_LinuxKernel_内存管理(二)虚拟内存管理、缺页与调试工具
        • 0x33_LinuxKernel_同步管理_原子操作_内存屏障_锁机制等
        • 01_LinuxDebug_调试理论和基础综述
      • Userspace
        • Linux-用户空间-多线程与同步
        • Linux进程之间的通信-管道(上)
        • Linux进程之间的通信-管道(下)
        • Linux进程之间的通信-信号量(System V)
        • Linux进程之间的通信-内存共享(System V)
        • Linux进程之间的通信-消息队列(System V)
        • Linux应用调试(一)方法、技巧和工具 - 综述
        • Linux应用调试(二)工具之coredump
        • Linux应用调试(三)工具之Valgrind
        • Linux机制之内存池
        • Linux机制之对象管理和引用计数(kobject/ktype/kset)
        • Linux机制copy_{to, from}_user
        • Linux设备树 - DTS语法、节点、设备树解析等
        • Linux System : Managing Linux Services - inittab & init.d
        • Linux System : Managing Linux Services - initramfs
      • Kernel Examples
        • Linux Driver - GPIO键盘驱动开发记录_OMAPL138
        • 基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(一)之miscdevice和ioctl
        • 基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(二)之cdev与read、write
        • 基于OMAPL138的字符驱动_GPIO驱动AD9833(三)之中断申请IRQ
        • Linux内核调用SPI驱动_实现OLED显示功能
        • Linux内核调用I2C驱动_驱动嵌套驱动方法MPU6050
    • OPTEE
      • 01_OPTEE-OS_基础之(一)功能综述、简要介绍
      • 02_OPTEE-OS_基础之(二)TrustZone和ATF功能综述、简要介绍
      • 03_OPTEE-OS_系统集成之(一)编译、实例、在QEMU上执行
      • 05_OPTEE-OS_系统集成之(三)ATF启动过程
      • 06_OPTEE-OS_系统集成之(四)OPTEE镜像启动过程
      • 07_OPTEE-OS_系统集成之(五)REE侧上层软件
      • 08_OPTEE-OS_系统集成之(六)TEE的驱动
      • 09_OPTEE-OS_内核之(一)ARM核安全态和非安全态的切换
      • 10_OPTEE-OS_内核之(二)对安全监控模式的调用的处理
      • 11_OPTEE-OS_内核之(三)中断与异常的处理
      • 12_OPTEE-OS_内核之(四)对TA请求的处理
      • 13_OPTEE-OS_内核之(五)内存和cache管理
      • 14_OPTEE-OS_内核之(六)线程管理与并发
      • 15_OPTEE-OS_内核之(七)系统调用及IPC机制
      • 16_OPTEE-OS_应用之(一)TA镜像的签名和加载
      • 17_OPTEE-OS_应用之(二)密码学算法和安全存储
      • 18_OPTEE-OS_应用之(三)可信应用的开发
      • 19_OPTEE-OS_应用之(四)安全驱动开发
      • 20_OPTEE-OS_应用之(五)终端密钥在线下发系统
    • Binary
      • 01_ELF文件_目标文件格式
      • 02_ELF文件结构_浅析内部文件结构
      • 03_ELF文件_静态链接
      • 04_ELF文件_加载进程虚拟地址空间
      • 05_ELF文件_动态链接
      • 06_Linux的动态共享库
      • 07_ELF文件_堆和栈调用惯例以ARMv8为例
      • 08_ELF文件_运行库(入口、库、多线程)
      • 09_ELF文件_基于ARMv7的Linux系统调用原理
      • 10_ELF文件_ARM的镜像文件(.bin/.hex/.s19)
    • Build
      • 01_Script_makefile_summary
    • Rust
      • 02_SYS_RUST_文件IO
    • Security
      • Crypto
        • 1.0_Security_计算机安全概述及安全需求
        • 2.0_Security_随机数(伪随机数)
        • 3.0_Security_对称密钥算法加解密
        • 3.1_Security_对称密钥算法之AES
        • 3.2_Security_对称密钥算法之MAC(CMAC/HMAC)
        • 3.3_Security_对称密钥算法之AEAD
        • 8.0_Security_pkcs7(CMS)_embedded
        • 9.0_Security_pkcs11(HSM)_embedded
      • Tools
        • Openssl EVP to implement RSA and SM2 en/dec sign/verify
        • 基于Mac Silicon M1 的OpenSSL 编译
        • How to compile mbedtls library on Linux/Mac/Windows
    • Embedded
      • eMMC启动介质
  • 😃Design
    • Secure Boot
      • JY Secure Boot Desgin
    • FOTA
      • [FOTA] Module of ECUs' FOTA unit design
        • [FOTA] Tech key point: OSTree Deployment
        • [FOTA] Tech key point: repositories role for onboard
        • [FOTA] Tech key point: metadata management
        • [FOTA] Tech key point: ECU verifying and Decrpting
        • [FOTA] Tech key point: time server
      • [FOTA] Local-OTA for Embedded Linux System
    • Provisioning
      • [X-Shield] Module of the Embedded Boards initialization
    • Report
由 GitBook 提供支持
在本页
  • 基于OMAPL138的字符驱动_GPIO驱动AD9833(三)之中断申请IRQ
  • 0. 导语
  • 1. 前篇导读:
  • 2. 申请中断准备
  • 3. 申请中断准备
  • 4. 中断释放
  • 源代码下载
  • 参考文献
  1. TECH
  2. Linux
  3. Kernel Examples

基于OMAPL138的字符驱动_GPIO驱动AD9833(三)之中断申请IRQ

https://github.com/carloscn/blog/issues/37

上一页基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(二)之cdev与read、write下一页Linux内核调用SPI驱动_实现OLED显示功能

最后更新于1年前

基于OMAPL138的字符驱动_GPIO驱动AD9833(三)之中断申请IRQ

0. 导语

学习进入到了下一个阶段,还是以AD9833为例,这次学习是向设备申请中断,实现触发,在未来很多场景,比如做用户级的SPI传输完毕数据之后,怎么知道从设备要发数据呢,则需要一个IO信号通知主设备来读从设备的数据,那么就需要一个外部的IO中断信号,所以呢,对于中断的处理十分重要,本demo实现这样的一个功能**增加一个GPIO口,这个GPIO口接的是一个按键,通过触发信号,进入中断服务函数,在中断服务函数内改变AD9833的波形。**以此达到学习实验目的。

之前的代码都是一样的,在这里尽量剥离AD9833驱动和Linux的代码模板,只写中断相关相关程序。

效果演示视频: https://v.youku.com/v_show/id_XMzY4MjAwOTA0MA==.html?spm=a2h3j.8428770.3416059.1

1. 前篇导读:

原理图:

2. 申请中断准备

  • 首先需要两个头文件:

  • #include <linux/interrupt.h>

  • #include <linux/irq.h>

  • IO口配置准备 在此次使用中断中,主要用的是GPIO口,我们使用电平跳变使之进入到中断处理程序中,所以作为IO口,需要配置IO口的方向为输入方向。我的OMAPL138中给的IO口操作使用GPIO_TO_PIN这个宏函数进行,在IO口操作上每个平台都会给定自己的寻IO口的方法,然后使用linux通用gpio_direction_output进行设定该GPIO口为输入方向,如上面的原理图,本demo的驱动使用的GPIO6[1],所以as follow:gpio_direction_output( GPIO_TO_PIN(6, 1) , 0 );

  • 硬件中断号IRQ 我参考了很多文献,也找了很多书籍,对于硬件中断号码从哪里得到一笔带过,也没有具体说明,不过,经过一下午的努力,我找到了查找中断号码的方法。使用gpio_to_irq这个函数方法可以得到irq。我之前找到手册,看到了手册里面说GPIO6 BANK的IRQ为48号,我尝试加载到内核里面,每次初始化的时候都告诉我中断申请失败,这个号看来不是datasheet给定的48号,在Linux内核里面对于硬件IRQ又进行了重新映射。

  • 中断事件 在内核中断申请的时候,需要指定中断事件是什么,边沿信号,高电平触发,低电平触发,在irq.h里面定义了:

	IRQ_TYPE_NONE		= 0x00000000,
	IRQ_TYPE_EDGE_RISING	= 0x00000001,
	IRQ_TYPE_EDGE_FALLING	= 0x00000002,
	IRQ_TYPE_EDGE_BOTH	= (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING),
	IRQ_TYPE_LEVEL_HIGH	= 0x00000004,
	IRQ_TYPE_LEVEL_LOW	= 0x00000008,
	IRQ_TYPE_LEVEL_MASK	= (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH),
	IRQ_TYPE_SENSE_MASK	= 0x0000000f	

我们需要指定这个事件。

  • 中断的名字 这个使用#cat /proc/interrupts 查看当前内核中断资源的时候就可以看到你指定注册的名字。

  • 中断服务程序 这个我们自己定一个函数就可以,然后一会儿使用中断申请的时候将数据传输进去就好。我们在中断服务函数里面进行按键进行波形切换:

static int key_count = 0;
static irqreturn_t	ad9833_press_intHandle( int irq, void *dev_id )
{
	printk( DRV_NAME "\t press trigger!\n" );
	if( key_count == 0 )  {
	    ad9833->set_wave_type( ad9833, SIN );
	    printk( DRV_NAME "\tSet wave is SIN.\n" );
	}else if( key_count == 2 ) {
	    ad9833->set_wave_type( ad9833, TRI );
	    printk( DRV_NAME "\tSet wave is TRI.\n" );
	}else if( key_count == 4 ) {
	    ad9833->set_wave_type( ad9833, SQU );
	    printk( DRV_NAME "\tSet wave is SQU.\n" );
	}
	key_count ++;
	if( key_count >= 5 )
	    key_count = 0;

	return	IRQ_RETVAL( IRQ_HANDLED );
}

3. 申请中断准备

使用request_irq函数就好,我们在初始化函数里面,申请irq。在申请irq前,为了更好的管理中断函数,我们定义了一个结构体,专门进行irq配置。

struct gpio_irq_desc {

	int irq;
	unsigned long flags;
	char *name;

} press_dev_desc = {

		0,
		IRQ_TYPE_EDGE_FALLING,
		"sw6_push_button"

};

第一个是irq,我们在向内核申请中断的时候会使用gpio_to_irq进行irq的赋值,flags就是中断事件的触发条件,这里是下降边沿触发,最后一个name就是上面注册号中断分配的名字,初始化程序如下:

	/*
	 * interrupt apply
	 * */
	press_dev_desc.irq =  gpio_to_irq(ad9833_gpios[3]);
	ret =	request_irq( press_dev_desc.irq , &ad9833_press_intHandle, press_dev_desc.flags, press_dev_desc.name, (void*)0 );
	if( ret ) {
		printk( DRV_NAME "\terror %d: IRQ = %d number failed!\n",ret,gpio_to_irq(ad9833_gpios[3]) );
		ret = -EBUSY;
	    unregister_chrdev_region( devno,1 );
		for( i = 0; i < ARRAY_SIZE(ad9833_gpios); i++)
		    gpio_free( ad9833_gpios[i] );
		kfree(ad9833);
        return ret;
	}
	printk( DRV_NAME "\tiqr apply ok!!\n" );
	

到此我们就完成了中断配置。

4. 中断释放

使用freqq_irq进行释放。这个函数应该放在exit驱动的函数里面。 free_irq( press_dev_desc.irq, (void*)0 );

源代码下载

链接: https://pan.baidu.com/s/1JgPgGP1Ag_oixHmHOy3QEw 密码: 5x84

参考文献

[1] 创龙电子科技, , 百度文库, 2014年5月8日

[2] wh_19910525, , CSDN博客, 2013年12月25日

[3] wangcong02345, , CSDN博客, 2016年7月9日

[4] GreenHand#, , CNBLOGS, 2016年12月27日

😾
OMAPL138的GPIO输出输入
Linux的 标准GPIO及中断API函数
Linux内核---44.关于中断号与中断引脚
Linux设备驱动中断机制
基于OMAPL138的字符驱动_GPIO驱动AD9833(一)之ioctl
基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(二)之cdev与read、write
Linux GPIO键盘驱动开发记录_OMAPL138